Hydrogen in induced reaction have lowest Coulomb barrier \Rightarrow highest reaction rate

Hydrogen burning provides energy production in "Main Sequence Stars" in the HR Diagram (sun) until hydrogen fuel is depleted ⇒ the life time of main sequence star depends on the reaction rates

The stellar evolution, or subsequent evolutionary stages depend on the subsequent nucleosynthesis mechanisms or their nuclear fuel processing!

Topics in Nuclear Astrophysics III

Stellar Hydrogen burning

nuclear reactions in the pp-chains
pp-nucleosynthesis and energy production
neutrino origin & neutrino signals
pp-experiments underground

nuclear reactions in the CNO cycles
the CNO cycles
CNO nucleosynthesis and energy production
CNO experimental questions

Nucleosynthesis Sites and Conditions

Temperature and Density Evolution in Stellar Core

Hydrogen Burning Stage of Stellar Evolution

Stars with M>1.5M_o

Stars with M<1.5M_o

2

The pp-chains

pp-1:	¹ H(p,e ⁺ ν) ² H ² H(p,γ) ³ He ³ He(³ He,2p) ⁴ He	84.7%
pp-2:	3 He(α , γ) 7 Be 7 Be(e ⁻ , \mathbf{v}) 7 Li 7 Li(p, α) 4 He	13.8% 13.78%
pp-3:	⁷ Be(p,γ) ⁸ B ⁸ B(β ⁺ ν)2 ⁴ He	0.02%

fusion of 4 ¹H \rightarrow 4He + 2e+ + 2ve + 26.7 MeV energy release

neutrino production

contributions from different reactions in the pp-chains. The branching point of 3 He(3 He,2p) 4 He/ 3 He(α,γ) 7 Be is extremely important for generation of high energy neutrinos (accessible to Homestake Chlorine detector)

REACTION	терм. (%)	<pre>/ ENREGY (MoV)</pre>
$p + p \rightarrow^{2}H + e^{+} + \nu_{0}$	(99.96)	≤ 0.423
$\mathbf{p} + \mathbf{e}^- + \mathbf{p} \rightarrow {}^2\mathbf{H} + \nu_e$	(0.44)	1,445
$\gamma + \nu H^{\alpha} + \eta + H^{\alpha}$	(100)	
⁹ He + ⁹ He - a + 2p	(85)	
"He + "He "Be + γ	(15)	
$^{T}\mathrm{Be}+\mathrm{e}^{+}\rightarrow ^{T}\mathrm{Bi}+\nu_{e}$	(15)	{0.863.965 0.385.10%
$^{T}Li + p \rightarrow 2\alpha$		
⁷ Be + p \rightarrow ⁴ B + γ ⁴ B \rightarrow ⁴ Be ⁴ + e ⁺ + n	(0.02)	× 18
$^{*}\mathrm{Be}^{*} \rightarrow 2\sigma$		
0 7		
$^{0}\mathrm{He}+\mathrm{p}\rightarrow ^{4}\mathrm{He}+\mathrm{e}^{*}+\nu_{e}$	(0.00000.0)	<15.1

Neutrino terminations from BP2000 solar model. Neutrino energies include solar corrections: J. Bahcall, Phys. Rev. C, 56, 8391(1997).

Impact of pp-chain reaction rates on v production

High precision (<5%) measurements for the interpretation of solar v flux at v detectors & v oscillation analysis!

For summary and details: Adelberger et al. Rev.Mod.Phys. 70, 1265 (1998)

Network for the pp-chain I

$$\begin{split} \frac{d^{1}H}{dt} &= -2 \cdot \frac{1}{2} \cdot Y_{_{1H}} \cdot Y_{_{1H}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{1}H(p,e^{-}\nu)}} + 2 \cdot \frac{1}{2} \cdot Y_{_{^{3}He}} \cdot Y_{_{^{3}He}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}He(^{3}He,2p)}} \\ \frac{d^{2}H}{dt} &= -Y_{_{2H}} \cdot Y_{_{1H}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{2}H(p,\gamma)}} + \frac{1}{2} \cdot Y_{_{1H}} \cdot Y_{_{1H}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{1}H(p,e^{-}\nu)}} \\ \frac{d^{3}He}{dt} &= -2 \cdot \frac{1}{2} Y_{_{^{3}He}} \cdot Y_{_{3}He} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}He(^{3}He,2p)}} + Y_{_{2H}} \cdot Y_{_{1H}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{2}H(p,\gamma)}} \\ \frac{d^{4}He}{dt} &= \frac{1}{2} Y_{_{^{3}He}} \cdot Y_{_{3}He} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}He(^{3}He,2p)}} \end{split}$$

Hydrogen is depleted under release of neutrinos! Helium is being produced + energy release $4H \Rightarrow 1^{4}He!$

life time characteristics

Enormous differences in S-factors due to nuclear interaction

S _{p+p}	=	5 10 ⁻²⁵ MeV-barn	weak interaction
S _{7Be(p.y)}	=	2 10 ⁻⁵ MeV-barn	electromagnetic interaction
$S_{3He(\alpha,\gamma)}$	=	5 10 ⁻⁴ MeV-barn	electromagnetic interaction
S _{2H(p,γ)}	=	2 10 ⁻⁴ MeV-barn	electromagnetic interaction
S _{3He(3He,2p)}	Ξ	5 MeV-barn	strong interaction

Differences translate into differences in reaction rate and life times some nuclei will be processed extremely fast, others will be processed extremely slow.

Slowest process in the fusion sequence determines life time of burning phase and energy production in the sun!!!

lifetime of sun!

 \mathbf{V}

slowest reaction rate: ${}^{1}H(p,e^{+}v){}^{2}H$

$$\begin{aligned} \lambda_{pp} &= \frac{\rho}{2} \cdot \frac{X_{H}}{A_{H}} \cdot N_{A} \langle \sigma \upsilon \rangle_{pp} = \\ &= \frac{\rho}{2} \cdot \frac{X_{H}}{A_{H}} \cdot 3.9 \cdot 10^{9} \left(\frac{Z_{H} \cdot Z_{H}}{\mu} \right)^{1/3} T_{9}^{-2/3} \cdot S[MeV - Barn] \cdot e^{\left(-4.248 \left(\frac{Z_{H}^{2} Z_{H}^{2} \mu}{T_{9}} \right)^{1/3} \right)} \\ &= \rho \cdot X_{H} \cdot 4.93 \cdot 10^{9} \cdot T_{9}^{-2/3} \cdot S[MeV - Barn] \cdot e^{\left(-\frac{3.37}{T_{9}^{1/3}} \right)} \end{aligned}$$

with ρ =10 g/cm³; X_H=0.5; T₉=0.015; S=5 10⁻²⁵ MeV barn $\Rightarrow \lambda_{pp}$ =2.34·10⁻¹⁹ [1/s]; $\Rightarrow \tau_{pp}$ =1/ λ_{pp} =4.5·10¹⁸ [s]

The p+p reaction

 $^{1}H(p,e^{+}v)^{2}H$ is a reaction based on weak interaction mechanism

the S-factor is calculated: S=5 10⁻²⁵ MeV-barn

What would be the life time of hydrogen with strong interaction S=5 10⁻⁵ MeV-barn?

Speculation in hydrogen burning

 S_{weak} =5·10⁻²⁵ MeV-barn $\Rightarrow S_{strong}$ =5·10⁻⁵ MeV-barn

$$\tau_{\odot} \approx 4 \cdot 10^{18} \, \text{s} \approx 1.3 \cdot 10^{11} \, \text{y}$$
$$\implies \tau_{\text{strong}} \approx 4 \cdot 10^{-2} \, \text{s} \approx 1.3 \cdot 10^{-9} \, \text{y}$$

The nature of the nuclear reaction mechanism controls the lifetime of stars in general and our sun specifically.

energy production

$$\varepsilon_{pp} = Q \cdot \frac{r_{pp}}{\rho} = 9.65 \cdot 10^{17} \frac{X_H}{A_H} \cdot \lambda_{pp} \cdot Q_6 \quad \left[\frac{erg}{g \ s}\right]$$
$$= \rho \cdot X_H^2 \cdot 4.76 \cdot 10^{27} \cdot T_9^{-2/3} \cdot Q_6 \cdot S[MeV - Barn] \cdot e^{\left(-\frac{3.37}{T_9^{1/3}}\right)}$$

 $\varepsilon = 2.96 \left\lfloor \frac{erg}{g \ s} \right\rfloor$ $M_{\Theta} = 2 \cdot 10^{33} \ [g]$ $\varepsilon_{\Theta} = 5.92 \cdot 10^{33} \ \left[\frac{erg}{s} \right]$

with
$$Q_6 = 26 \text{ MeV}$$

$$\varepsilon_{obs} = 4 \cdot 10^{33} \quad \left[\frac{erg}{s}\right]$$

Experimental difficulties!

Reaction Yield as function of energy

$$Y(E) = \int_{E-\Delta E}^{E} \frac{\sigma(E)}{\varepsilon(E)} \cdot dE$$
$$\varepsilon(E) = \frac{1}{n} \cdot \frac{dE}{dx}$$

Yield is experimental observable product between actual reaction probability (cross section) and the atomic interaction between beam particles & target material.

Two energy dependent functions $\sigma(E)$ and $\varepsilon(E)$

 $\Delta E \equiv$ energy loss in target E \equiv beam energy n \equiv number density of active target atoms

reminder

$$n = v \rho \frac{N_A}{A}$$
 solid: N_A =6.022·10²³ atoms/mole
 $n = v L$ gas: L=2.69·10¹⁹ atoms/cm³

v: number of atoms/molecule

example: N₂ gas $v=2 \implies n=5.48 \cdot 10^{19}$ atoms/cm³

Al solid v=1, ρ =2.69g/cm³, A=27 \Rightarrow n=6·10¹⁹ atoms/cm³

significant changes in ϵ over the critical energy range of astrophysical measurements

Thin Target Yield

no significant change in σ or ε over energy loss range ΔE

$$Y = \int_{E-\Delta E}^{E} \frac{\sigma(E)}{\varepsilon(E)} dE \approx \frac{\sigma}{\varepsilon} \cdot \int_{E-\Delta E}^{E} dE = \sigma \cdot \frac{dE}{\varepsilon} = \sigma \cdot \frac{\Delta E}{\varepsilon} = \sigma \cdot \frac{\Delta E}{\frac{dE}{n \cdot dx}} \approx \sigma \cdot n \cdot \Delta x$$

if molecular target with $N_a = n_a \Delta x$ active atoms/cm² and several $N_i = n_i \Delta_x$ inactive atoms/cm²

$$\Delta E = N_a \cdot \varepsilon_a + \sum_i N_i \cdot \varepsilon_i; \qquad \varepsilon = \varepsilon_a + \frac{\sum_i N_i}{N_a} \cdot \varepsilon_i$$

$$\mathsf{Ta}_2\mathsf{O}_5 \quad \mathcal{E}_{Ta_2O_5} = \mathcal{E}_O + \frac{2}{5} \cdot \mathcal{E}_{Ta}$$

Example: ³He+⁴He

Detection count rate

yield Y is number of reactions/incoming particle to determine count rate you need to correct for detection efficiency η and number of incoming beam projectiles N_p .

$$I = Y \cdot \eta \cdot N_p [1/s] = Y \cdot \eta \cdot \frac{I[A]}{1.6 \cdot 10^{19}} [1/s]$$

detection efficiency η depends on interaction probability between radiation and detector material

Yield and event rate

example: ${}^{12}C(\alpha,\gamma){}^{16}O$

low energy measurements limited by background rate

Background: Cosmic Rays

RadiationLNGS/surfaceMuons10-6Neutrons10-3Photons10-1

Underground Laboratory

LUNA @ Gran Sasso

Rock as passive shielding cosmic ray background Reduction $\approx 10^{-4}$

4-50 keV Accelerator p-, α -beams $\leq 1 \text{ mA}$

Study of pp-chains e.g. ³He+³He

Significant background reduction but ...!

LUNA-II upgrade

50-400 keV VdG Accelerator Laboratory p-, α -beams ≤ 0.5 mA

Study of p-capture on CNO nuclei (CNO-cycles) and α capture on light nuclei

Branching and Neutrino Flux

increase in the ³He+³He reaction rate by factor X would reduce the neutrino flux from the ⁷Be(e-, ν), ⁸B(β + ν) significantly! The resonance possibility appeared at its time as potential solution for solar neutrino problem! \Rightarrow Search for resonance!

Background Reduction

background reduction by underground location
event identification by p-p coincidence requirement

Present status on ³He(³He,2p)⁴He

extensive search towards low energies but no evidence was found

⁷Be(p,γ)⁸B

impact on v detectors and interpretation of v flux measurements

reaction determines the branch between pp-II and pp-III:

pp-II feeds the ${}^{7}Be(e-,v){}^{7}Li$ neutrino source pp-III feeds the ${}^{8}B(\beta+v){}^{2}$ ⁴He neutrino source

impacts Chlorine, SuperK and SNO experiments

Coulomb break-up techniques e.g. ⁷Be(p,γ)⁸B 10 140

⁷Be(p,γ)⁸B

through capture reaction techniques

or virtual photons

Coulomb break-up

Coulomb dissociation method

7Be 👹 0.4 c p E1 + E2 + M1208Pb detailed balance γ)⁸B (capt. virtual photon number: $\left(\frac{d\sigma}{dE_{\gamma}}\right)_{CD} = \frac{(2j_7 + 1)(2j_1 + 1)}{2(2j_8 + 1)} \frac{k_{17}^2}{k_{\gamma}^2} \sigma_{(p,\gamma)}$

⁸B+²⁰⁸Pb -> ⁷Be+p+²⁰⁸Pb

virtual photon theory ⁸B(γ ,p)⁷Be (abs.)

⁷Be(p, γ)⁸B (capt.

Coulomb Dissociation Experiment

GSI version

Experimental Results (NSCL/MSU)

Results and comparison

 $S_{17}(0) = 17.3 \pm 1.4 \text{ eV b}$

 $\langle S_{17}(0) \rangle = 17.7 \pm 0.7 \text{ eV b}$

useful method if conditions (E2 transitions, ground state transitions) are guaranteed!

Network simulations at low temperature conditions of 10⁷ K

time [s]